SLO | EN

Objectives and competences

The student will: • Understand the basics of artificial intelligence and machine learning. • Understand the role, meaning, strengths and weaknesses of ML models. • Define appropriate methods for problem solving. • Understands different ML algorithms. • Use ML tools and SW.. • Evaluate quality of learnd ML models. • Present the results of modeling.

Content (Syllabus outline)

1. Introduction to artificial intelligence and machine learning 2. The role of machine learning in organizations 3. Machine learning basics 4. Machine learning algorithms (various methods, how they work, strengths, weakness, use) 5. Classification & Regression models 6. Clustering 7. Texts and visual analysis 8. Collecting data from instruments and devices (how to collect, save, analyse data from different sources) 9. Data pre-processing 10. Finding patterns and outliers in (big) data 11. Model development 12. Experimental evaluation of the learned models 13. Use cases of machine learning models

Learning and teaching methods

• Lectures • Team work • Case studies • Excersises

Intended learning outcomes - transferable/key skills and other attributes

Knowledge and understanding of: • At the end of the course, the students will be able to:Define the problem and its context. • Identify opportunities for application of data visualization. • Acquire data from available sources. • Pre-process data. • Choose appropriate methods with emphasis on data visualization. • Build ML model using appropriate tools (Orange, Tensorflow). • Interpret the results. • Experimentally valuate the quality of learned ML models. • Effectively communicate modelling results to various audiences.

Readings

1. Provost, F. & Fawcett, T. (2013): Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking 1st Edition, O'Reilly 2. Neapolitan, R.E., Jiang, X. (2018): Artificial Intelligence, With and Introduction to Machine Learning, Second Edition, CRC Press 3. Shalev-Schwartz, S., Ben-David, S. (2014): Understanding Machine Learning, From Theory to Algorithms, Cambridge University Press 4. Kononenko, I., Robnik Šikonja, M.: Inteligentni sistemi. Založba FE in FRI, Ljubljana, 2010

Prerequisits

Basics computer skills. Conditions for exam admission: Completed assignments at lectures and tutorials. Completed project.

  • red. prof. dr. MIRJANA KLJAJIĆ BORŠTNAR, univ. dipl. org.

  • Written examination: 50
  • Project work: 30
  • Problem solving: 20

  • : 39
  • : 27
  • : 114

  • Slovenian
  • Slovenian

  • ORGANIZATION AND MANAGEMENT OF INFORMATION SYSTEMS - 2nd