Objectives and competences
		Cilj predmeta je študente usposobiti za uporabo metod strojnega učenja in za presojo rezultatov uporabe strojnega učenja na izbranih primerih s področja njihovega matičnega študijskega programa.
	 		    Content (Syllabus outline)
		Artificial intelligence: basic concepts and areas of use.
Problems that can be solved with machine learning.
Machine learning algorithms: supervised learning, unsupervised learning, reinforcement learning.
Practical approaches to machine learning: analysis and preparation of data for machine learning, algorithm selection, evaluation measures. 
Fundamentals of statistics: basic terms, mean values, important statistical distributions, law of large numbers.
Statistical tests: null and alternative hypothesis, test statistics, parametric and non-parametric tests.
	 		    Learning and teaching methods
		•	Lectures
•	Seminar
•	Individual work
	 		    Intended learning outcomes - knowledge and understanding
		Knowledge and understanding:
• describe the basic principles of frequently used machine learning
methods
• use existing methods and tools for machine learning on problems
from their primary study program
• describe basic terms from statistics and statistical hypothesis
testing, and select the appropriate statistical test
• use the statistical significance test and interpret the results on a
machine learning example
Transferable/Key skills and other attributes:
• manner of oral expression at the presentation of seminar paper
• use of information technology
	 		    Readings
		• Kononenko, I. (2005). Strojno učenje (2. popravljena in dopolnjena izd., p. XII, 450). Fakulteta za računalništvo in informatiko.
• Burkov, A. (2019). The hundred-page machine learning book (p. XVIII, 141). Andriy Burkov.
• K.-L. Du, M. N. S. Swamy: Neural Networks and Statistical Learning. Springer, London, 2014
• Jamnik, R. (1980). Matematična statistika (Vol. 12, p. 408). Državna založba Slovenije.
	 		    Prerequisits
		Recommended basic knowledge of programming and mathematics.